Association between rs2275913 polymorphism in IL-17 gene and gastric cancer susceptibility: a Meta-analysis

LU Wenjun, WANG Xiaoqin, YANG Lixia, YANG Qing, YANG Rong, YE Hui, YU Dengfeng

(Department of Oncological Surgery, Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, China)

Abstract Objective: To investigate the association between rs2275913 site polymorphism of IL-17 gene and the risk of gastric cancer.

Methods: The case-control studies on relationship between the IL-17 rs2275913 G>A polymorphism and gastric cancer susceptibility were collected by searching several national and international databases. After literature screening, data extraction and quality assessment, Meta-analysis was performed by STATA 12.1 software.

Results: Ten case-control studies were finally included, with 4 371 patients in case group and 5 345 subjects in control group. Meta-analysis results showed that among the rs2275913 site polymorphisms of IL-17 gene, the risk of gastric cancer was increased under allele-contrast model (A vs. G) (OR=1.22, 95% CI=1.10–1.37) and additive model (AA vs. GG) (OR=1.58, 95% CI=1.23–2.04), and was decreased under dominant model (AG+GG vs. AA) (OR=0.63, 95% CI=0.48–0.84) and recessive model (GG vs. AG+AA) (OR=0.86, 95% CI=0.78–0.94), but had no significant association with the risk of gastric cancer (P>0.05).

Conclusion: IL-17 gene rs2275913 polymorphism is associated with gastric cancer susceptibility.

Key words: Gastric cancer; IL-17; rs2275913 polymorphism; Meta-analysis

中图分类号: R735.2
在全球胃癌是具有较高发病率及病死率的恶性肿瘤之一[1]，胃癌的发生受多种因素的影响，其中主要有HP感染、环境因素及遗传因素等[2-3]。现阶段有大量的研究证明遗传基因的多态性在胃癌的发生过程中有至关重要的影响[4]，因此遗传基因的筛查和识别对胃癌的早期预防和早期诊治有关键的作用。

近几年大量的研究[5-7]表明：IL-17基因与胃癌的发生、发展有重要的相关性。IL-17是由CD4+的Th17细胞和中性粒细胞分泌的促炎症因子，可诱导多种炎症因子的产生，而且对中性粒细胞有趋化调节作用[8]，其不但在自身免疫性疾病、抗感染及移植排斥发挥重要作用，还在机体对多种恶性肿瘤的免疫应答中发挥作用，而且可能参与机体抗肿瘤或促肿瘤的过程[9]。目前国内外有多项研究比较了IL-17基因G>A多态性位点rs2275913（G197A）与胃癌易感性的报道，但他们的研究结果不完全一致，并且近年又有新的文献发表，为此，本研究旨在采用Meta分析的方法对国内外相关的文献进行系统评价，以明确IL-17 rs2275913多态性与胃癌易感性的关系。

1 资料与方法

1.1 检索策略

全面检索PubMed，EMBASE，The Cochrane Library，Web of Science，中国生物医学文献数据库（CBM），万方数据库，中国期刊全文数据库（CNKI），中文科技期刊数据库，同时检索在研究和相关学术组织网站，检索开始与截止日期为数据库建立至2015年4月21日，文献语种限定为中文和英文，英文检索词为：interleukin-17 gene，IL-17，genetic polymorphism，polymorphisms，variant，Stomach Neoplasms，gastric cancer；中文检索词为：胃癌、胃肿瘤、多态性、IL-17，白细胞介素17基因，白介素17。复杂检索用布尔逻辑运算连接检索词，所有检索策略通过多次预检索后确定。

1.2 纳入和排除标准

纳入标准：⑴ 病例组是经病理证实是胃癌患者，对照组是非肿瘤人群，并且研究评估了IL-17 rs2275913多态性；⑵ 文献为病例-对照研究；⑶ 研究中可获得详细的数据；⑷ 基因型分布符合Hardy-Weinberg遗传平衡定律（P>0.05）；⑸ 文献限定为中英文。排除标准：无法获取数据资料的文献；个案报道；非病例-对照研究；重复发表的研究。

1.3 资料提取

由2位研究者独立阅读所获文献题目和摘要，在排除明显不符合纳入标准的试验后，对可能符合纳入标准的试验阅读全文，以确定是否真正符合纳入标准。2位研究者交叉核对纳入试验的结果，对有分歧而难以确定其是否纳入的试验，通过讨论或由第三研究者决定其是否纳入。

1.4 质量评价

病例-对照研究的方法学质量评价由2名研究人按照Newcastle-Ottawa Scale（NOS）量表，通过3大块共8个条目进行方法学质量评价[10]。NOS对文献质量的评价采用了星级系统的半量化原则，满分为9颗，文献评分0~4颗*为低质量，5~9颗*为高质量的。

1.5 统计学处理

采用STATA 12.1统计软件进行Meta分析。纳入文献之间是否存在异质性运用q检验进行，无异质性（P>0.1，I²≤50%）选择固定效应模型，如果存在异质性（P<0.1，I²>50%）则选择随机效应模型。分别统计各基因模型的合并比值比（odds ratio，OR）和各效应量以95%置信区间（confidence interval，CI）表示。5种基因模型包括：等位基因模型（AA vs. GG）、显性模型（AG+GG vs. AA）、隐性模型（GG vs. AG+AA）、相加模型（AA vs. GG）及共显性模型（AG vs. AA+GG）。并且以基因检测方法、纳入研究原始资料来源及种族进行亚组分析，敏感性分析通过逐个剔除单个纳入研究评估这一研究对合并效应量的影响。通过漏斗图法分析以及采用
Egger检验分析发表偏倚。

2 结 果

2.1 纳入研究基本情况
最初共检索到133篇文献，中文文献41篇，英文文献92篇。阅读题名和摘要后排除不符合纳入标准文献79篇，剩下难以判断的通过查阅全文排除44篇，最终纳入10篇文献[11-20]。4篇为中文文献，6篇为英文文献，其中实验组胃癌患者4371例，对照组非肿瘤人数5345例。纳入文献中有5篇对照组选择为医院人群，4篇对照组选择为人群，1篇未提及对照组来源，有7篇研究对象为中国人群，有2篇研究对象为日本人群，有1篇是伊朗人群。文献质量评价均为5颗星以上，为高质量病例-对照研究，对照组基因型分布均符合Hardy-Weinberg遗传平衡定律（P>0.05）（表1）。

<table>
<thead>
<tr>
<th>纳入研究</th>
<th>国家</th>
<th>种族</th>
<th>对照组来源</th>
<th>基因型检测方法</th>
<th>基因型（病例组/对照组）</th>
<th>P_HWE</th>
<th>NOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu, 等 2010[12]</td>
<td>中国</td>
<td>中国人</td>
<td>人群对照</td>
<td>PCR-RFLP</td>
<td>945/768 210/193 250/204</td>
<td>485/371</td>
<td>0.384</td>
</tr>
<tr>
<td>陈健健 2010[13]</td>
<td>中国</td>
<td>中国人</td>
<td>人群对照</td>
<td>TaqMan</td>
<td>1 042/1 090 300/325 220/224</td>
<td>522/541</td>
<td>0.967</td>
</tr>
<tr>
<td>罗媛 2010[14]</td>
<td>中国</td>
<td>中国人</td>
<td>人群对照</td>
<td>TaqMan</td>
<td>24/230 67/9</td>
<td>9/30</td>
<td>9/121</td>
</tr>
<tr>
<td>Arisawa, 等 2012[15]</td>
<td>日本</td>
<td>日本人</td>
<td>医院对照</td>
<td>PCR-SSCP</td>
<td>333/583 112/218 84/72</td>
<td>137/293</td>
<td>0.080</td>
</tr>
<tr>
<td>Rafiei, 等 2013[16]</td>
<td>伊朗</td>
<td>伊朗人</td>
<td>不清楚</td>
<td>PCR-RFLP</td>
<td>161/171 56/78 44/21</td>
<td>61/72</td>
<td>0.491</td>
</tr>
<tr>
<td>吴小琴, 等 2014[20]</td>
<td>中国</td>
<td>中国人</td>
<td>人群对照</td>
<td>PCR-RFLP</td>
<td>945/768 210/193 250/204</td>
<td>485/371</td>
<td>0.351</td>
</tr>
</tbody>
</table>

2.2 Meta分析结果
等位基因、显性模型、共显性模型及相加模型异质性检验结果分别为：$I^2=66.4\%$、$I^2=84.7\%$、$I^2=68.5\%$、$I^2=74.2\%$，显示存在异质性。采用随机效应模型合并效应量，隐性模型异质性检验结果为：$I^2=0.0\%$，无统计学异质性，故采用固定效应模型合并效应量。

按5种基因模型分析：等位基因模型（OR=1.22, 95% CI=1.10~1.37）、显性模型（OR=0.63, 95% CI=0.48~0.84）、隐性模型（OR=0.86, 95% CI=0.78~0.94）及相加模型（OR=1.58, 95% CI=1.23~2.04）与胃癌易感性有关（均P<0.05），其中等位基因模型和相加模型增加胃癌罹患风险，而显性模型和隐性模型降低胃癌的易感性（图1-4），共显性模型增加胃癌患癌风险性无明显关系（OR=0.91, 95% CI=0.78~1.07）（P>0.05）（表2）。

按对照组人群选择进行亚组分析：针对来源于中国人群遗传基因模型中等位基因模型（OR=1.12, 95% CI=1.02~1.24）、隐性模型（OR=0.86, 95% CI=0.78~0.95）及相加模型（OR=1.24, 95% CI=1.03~1.50）与罹患胃癌的风险有关（均P<0.05），针对日本人群遗传基因模型中等位基因模型（OR=1.39, 95% CI=1.21~1.60）、显性模型（OR=0.38, 95% CI=0.29~0.49）、相加模型（OR=2.42, 95% CI=1.80~3.24）及共显性模型（OR=0.63, 95% CI=0.52~0.77）胃癌易感性有统计学意义（均P<0.05）（表2）。
（OR=0.74，95% CI=0.56~0.98）与胃癌风险有统计学意义（均P<0.05），显性模型

<table>
<thead>
<tr>
<th>Study ID</th>
<th>OR (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu 等 2010[12]</td>
<td>1.06 (0.92, 1.21)</td>
<td>13.60</td>
</tr>
<tr>
<td>陈健健 等 2010[13]</td>
<td>1.03 (0.92, 1.16)</td>
<td>14.17</td>
</tr>
<tr>
<td>罗媛 等 2010[14]</td>
<td>1.98 (1.09, 3.61)</td>
<td>2.83</td>
</tr>
<tr>
<td>Arisawa 等 2012[15]</td>
<td>1.41 (1.16, 1.71)</td>
<td>11.21</td>
</tr>
<tr>
<td>Rafiei 等 2013[16]</td>
<td>1.72 (1.26, 2.36)</td>
<td>7.18</td>
</tr>
<tr>
<td>Qinghai 等 2014[17]</td>
<td>1.28 (1.03, 1.58)</td>
<td>10.49</td>
</tr>
<tr>
<td>Zhang 等 2014[18]</td>
<td>1.35 (1.08, 1.68)</td>
<td>10.14</td>
</tr>
<tr>
<td>毕兰青 2014[19]</td>
<td>0.93 (0.65, 1.34)</td>
<td>6.09</td>
</tr>
<tr>
<td>吴小琴 等 2014[20]</td>
<td>1.06 (0.92, 1.21)</td>
<td>13.60</td>
</tr>
<tr>
<td>Overall (I²=66.4%, P=0.002)</td>
<td>1.22 (1.10, 1.37)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis

图 1 IL-17 rs2275913 多态性与胃癌易感性易感性关系的森林图（等位基因模型）

Figure 1 Forest plots for the association between IL-17 rs2275913 polymorphism and gastric cancer susceptibility (allele-contrast model)

<table>
<thead>
<tr>
<th>Study ID</th>
<th>OR (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shibata 等 2009[11]</td>
<td>0.33 (0.22, 0.49)</td>
<td>10.27</td>
</tr>
<tr>
<td>Wu 等 2010[12]</td>
<td>1.01 (0.81, 1.25)</td>
<td>12.07</td>
</tr>
<tr>
<td>陈健健 等 2010[13]</td>
<td>0.97 (0.78, 1.19)</td>
<td>12.12</td>
</tr>
<tr>
<td>罗媛 等 2010[14]</td>
<td>0.25 (0.10, 0.62)</td>
<td>5.46</td>
</tr>
<tr>
<td>Arisawa 等 2012[15]</td>
<td>0.42 (0.29, 0.59)</td>
<td>10.81</td>
</tr>
<tr>
<td>Rafiei 等 2013[16]</td>
<td>0.37 (0.21, 0.66)</td>
<td>8.40</td>
</tr>
<tr>
<td>Qinghai 等 2014[17]</td>
<td>0.69 (0.45, 1.04)</td>
<td>10.11</td>
</tr>
<tr>
<td>Zhang 等 2014[18]</td>
<td>0.66 (0.44, 1.00)</td>
<td>10.21</td>
</tr>
<tr>
<td>毕兰青 2014[19]</td>
<td>0.92 (0.52, 1.63)</td>
<td>8.46</td>
</tr>
<tr>
<td>吴小琴 等 2014[20]</td>
<td>1.01 (0.81, 1.25)</td>
<td>12.07</td>
</tr>
<tr>
<td>Overall (I²=84.7%, P=0.002)</td>
<td>0.63 (0.48, 0.84)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis

图 2 IL-17 rs2275913 多态性与胃癌易感性易感性关系的森林图（显性模型）

Figure 2 Forest plots for the association between IL-17 rs2275913 polymorphism and gastric cancer susceptibility (dominant model)

<table>
<thead>
<tr>
<th>Study ID</th>
<th>OR (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shibata 等 2009[11]</td>
<td>0.97 (0.71, 1.32)</td>
<td>8.04</td>
</tr>
<tr>
<td>Wu 等 2010[12]</td>
<td>0.85 (0.68, 1.06)</td>
<td>15.97</td>
</tr>
<tr>
<td>陈健健 等 2010[13]</td>
<td>0.95 (0.79, 1.15)</td>
<td>21.81</td>
</tr>
<tr>
<td>罗媛 等 2010[14]</td>
<td>0.64 (0.24, 1.67)</td>
<td>1.08</td>
</tr>
<tr>
<td>Arisawa 等 2012[15]</td>
<td>0.85 (0.64, 1.13)</td>
<td>10.14</td>
</tr>
<tr>
<td>Rafiei 等 2013[16]</td>
<td>0.64 (0.41, 0.99)</td>
<td>4.76</td>
</tr>
<tr>
<td>Qinghai 等 2014[17]</td>
<td>0.77 (0.58, 1.02)</td>
<td>10.43</td>
</tr>
<tr>
<td>Zhang 等 2014[18]</td>
<td>0.72 (0.53, 0.98)</td>
<td>9.67</td>
</tr>
<tr>
<td>毕兰青 2014[19]</td>
<td>1.27 (0.73, 2.21)</td>
<td>2.13</td>
</tr>
<tr>
<td>吴小琴 等 2014[20]</td>
<td>0.85 (0.68, 1.06)</td>
<td>15.97</td>
</tr>
<tr>
<td>Overall (I²=0.0%, P=0.561)</td>
<td>0.86 (0.78, 0.94)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis

图 3 IL-17 rs2275913 多态性与胃癌易感性易感性关系的森林图（隐性模型）

Figure 3 Forest plots for the association between IL-17 rs2275913 polymorphism and gastric cancer susceptibility (recessive model)
2.3 发表偏移分析

针对各基因模型分别采用漏斗图及Egger回归法进行量化分析，结果均未见发表偏移。其中等位基因模型（A vs. G）的P值为0.075（图5）。

图 5 等位基因模型 Egger 回归图

Figure 5 Egger’s regression plots for the allele-contrast model

3 讨 论

IL-17是Th17细胞分泌的关键的细胞因子，T17细胞介导的炎症免疫在人体免疫系统占重要的地位，其对外来病原抵抗和在自身组织免疫致病过程中发挥着重要的作用[21]。目前，IL-17在肿瘤免疫中有很大的争议，其作为一种促炎因子，有的研究[22]显示IL-17在肿瘤血管生成过程中起到促进作用，进而使肿瘤发生、生长及转移，也有研究[23]表明其可增强肿瘤局部T细胞相关的免疫反应，抑制肿瘤的发生及生长。

本文纳入10篇高质量的病例-对照研究，对照组10篇基因型分布符合Hardy-Weinberg遗传平衡定律（P>0.05）。针对IL-17 rs2275913基因多态性与胃癌的易感性进行Meta分析。Shibata、Arisawa、Rafiei、Qinghai、Zhang及陈健健等的
6篇研究[11, 13, 15-18]中显示IL-17 rs2275913 G>A位点多态性与胃癌的易感性有相关性，并增加胃癌的罹患风险。Wu、罗媛等、毕兰青及吴小琴等的4篇研究[12,14,19-20]中显示IL-17 rs2275913 G>A位点多态性与胃癌的易感性无相关性。由于胃癌属于炎症相关肿瘤，故纳入研究中3个研究对基因多态性与胃癌易感性的结果进行了幽门螺旋杆菌（Helicobacter Pylori, Hp）感染组与非感染组的分层分析，在罗媛等[14]的研究结果显示HP感染阳性与阴性的群体中，IL-17基因G>A位点的变异显示其的罹患风险，这也与笔者在背景中提到的IL-17在组织中的表达降低，其感染后组织中IL-17表达增高，经过抗HP治疗后IL-17在组织中的表达降低。

本文通过5种遗传基因模型探讨对IL-17基因rs2275913位点多态性与胃癌的易感性的关系。

Meta分析结果显示：IL-17基因G>A位点的变异与胃癌易感性无统计学相关性。由于胃癌属于炎症相关肿瘤，故纳入研究中3个研究对基因多态性与胃癌易感性的结果进行了幽门螺旋杆菌（Helicobacter Pylori, Hp）感染组与非感染组的分层分析，在罗媛等[14]的研究结果显示HP感染阳性与阴性的群体中，IL-17基因G>A位点的变异显示其的罹患风险，这也与笔者在背景中提到的IL-17在组织中的表达降低，其感染后组织中IL-17表达增高，经过抗HP治疗后IL-17在组织中的表达降低。

本文通过5种遗传基因模型探讨对IL-17基因rs2275913位点多态性与胃癌的易感性的关系。

Meta分析结果显示：IL-17基因G>A位点的变异与胃癌易感性无统计学相关性。由于胃癌属于炎症相关肿瘤，故纳入研究中3个研究对基因多态性与胃癌易感性的结果进行了幽门螺旋杆菌（Helicobacter Pylori, Hp）感染组与非感染组的分层分析，在罗媛等[14]的研究结果显示HP感染阳性与阴性的群体中，IL-17基因G>A位点的变异显示其的罹患风险，这也与笔者在背景中提到的IL-17在组织中的表达降低，其感染后组织中IL-17表达增高，经过抗HP治疗后IL-17在组织中的表达降低。
关于一稿两投和一稿两用问题处理的声明

本刊编辑部发现仍有个别作者一稿两投和一稿两用，为了维护本刊声誉和广大读者的利益，本刊就一稿两投和一稿两用问题的处理声明如下。

1. 一稿两投和一稿两用的认定：凡属原始研究的报告，同语种－－语－－两份投寄在异杂志，或主要数据和图表相同、只是文字表达可能存在某些不同之处的两篇文稿，分别投寄不同的杂志，属一稿两投；一经为两杂志刊用，则为一稿两用。会议纪要、疾病的诊断标准和防治指南、有关组织达成的共识性文件、新闻报道类文稿分别投寄不同的杂志，以及在一种杂志发表过后再将全文投寄另一杂志，不属一稿两投。但作者若要重复投稿，应向有关杂志编辑部作出说明。

2. 作者在接到收稿回执后满3个月未接到退稿通知，表明稿件仍在处理中，若欲投他刊，应先与本刊编辑部联系。

3. 编辑部认为文稿有一稿两投或一稿两用嫌疑时，应认真收集有关资料并仔细核对后再通知作者，在作出处理决定前请作者就该问题作出解释。编辑部与作者双方意见发生分歧时，由上级主管部门或有关权威机构进行最后仲裁。

4. 一稿两投一经证实，则立即退稿，对作者作为第一作者所撰写的论文，2年内拒绝在本刊发表；一稿两用一经证实，将择期在杂志中刊出作者姓名、单位以及该论文系重复发表的通告，对作者作为第一作者所撰写的论文，2年内拒绝在本刊杂志发表。本刊将就此事件向作者所在单位和该领域内的其他科技期刊进行通报。

（本文编辑 宋涛）